Radar HRRP Target Recognition Based on Stacked Autoencoder and Extreme Learning Machine

نویسندگان

  • Feixiang Zhao
  • Yongxiang Liu
  • Kai Huo
  • Shuanghui Zhang
  • Zhongshuai Zhang
چکیده

A novel radar high-resolution range profile (HRRP) target recognition method based on a stacked autoencoder (SAE) and extreme learning machine (ELM) is presented in this paper. As a key component of deep structure, the SAE does not only learn features by making use of data, it also obtains feature expressions at different levels of data. However, with the deep structure, it is hard to achieve good generalization performance with a fast learning speed. ELM, as a new learning algorithm for single hidden layer feedforward neural networks (SLFNs), has attracted great interest from various fields for its fast learning speed and good generalization performance. However, ELM needs more hidden nodes than conventional tuning-based learning algorithms due to the random set of input weights and hidden biases. In addition, the existing ELM methods cannot utilize the class information of targets well. To solve this problem, a regularized ELM method based on the class information of the target is proposed. In this paper, SAE and the regularized ELM are combined to make full use of their advantages and make up for each of their shortcomings. The effectiveness of the proposed method is demonstrated by experiments with measured radar HRRP data. The experimental results show that the proposed method can achieve good performance in the two aspects of real-time and accuracy, especially when only a few training samples are available.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Feature Learning Model for Sequential Radar High Resolution Range Profile Recognition

This paper proposes a new feature learning method for the recognition of radar high resolution range profile (HRRP) sequences. HRRPs from a period of continuous changing aspect angles are jointly modeled and discriminated by a single model named the discriminative infinite restricted Boltzmann machine (Dis-iRBM). Compared with the commonly used hidden Markov model (HMM)-based recognition method...

متن کامل

Synthetic Aperture Radar Target Recognition with Feature Fusion Based on a Stacked Autoencoder

Feature extraction is a crucial step for any automatic target recognition process, especially in the interpretation of synthetic aperture radar (SAR) imagery. In order to obtain distinctive features, this paper proposes a feature fusion algorithm for SAR target recognition based on a stacked autoencoder (SAE). The detailed procedure presented in this paper can be summarized as follows: firstly,...

متن کامل

Radar HRRP Modeling using Dynamic System for Radar Target Recognition

High resolution range profile (HRRP) is being known as one of the most powerful tools for radar target recognition. The main problem with range profile for radar target recognition is its sensitivity to aspect angle. To overcome this problem, consecutive samples of HRRP were assumed to be identically independently distributed (IID) in small frames of aspect angles in most of the related works. ...

متن کامل

Multi-task hidden Markov modeling of spectrogram feature from radar high-resolution range profiles

In radar high-resolution range profile (HRRP)-based statistical target recognition, one of the most challenging task is the feature extraction. This article utilizes spectrogram feature of HRRP data for improving the recognition performance, of which the spectrogram is a two-dimensional feature providing the variation of frequency domain feature with time domain feature. And then, a new radar H...

متن کامل

Adaptive Angular-sector Segmentation Radar Target Recognition based on Grey System

The aspect sensitivity of high-resolution range profile (HRRP) leads to the anomalous change of the HRRP statistical characteristic, which is one of inextricable problems on the target recognition based on HRRP. Aiming at the HRRP statistical characteristic, an adaptive angular-sector segmentation method is proposed through based on the grey relational mode. Comparing to the equal interval angu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2018